A pharmacologically distinct nicotinic ACh receptor is found in a subset of frog semicircular canal hair cells.
نویسندگان
چکیده
Frog vestibular organs are endowed with a prominent cholinergic efferent innervation whose stimulation results in several different effects, thereby suggesting diversity in the expression of postsynaptic acetylcholine (ACh) receptors. The application of ACh can mimic efferent stimulation in producing both an inhibition and a facilitation of afferent discharge which are thought to be mediated by at least two distinct ACh receptors present on vestibular hair cells, i.e., alpha9-containing nicotinic receptors (alpha9nAChR) and muscarinic receptors (mAChR), respectively. Using patch-clamp and multiunit vestibular afferent recordings, we demonstrate the presence of an additional excitatory hair cell nicotinic ACh receptor pharmacologically distinct from both alpha9nAChR and mAChR. In order of increasing potency, this distinct receptor was activated by ACh, carbachol, and particularly by the selective nicotinic agonist 1,1-dimethyl-4-phenyl-piperazinium (DMPP). This DMPP-sensitive nicotinic receptor (RDMPP) was antagonized by the classic nicotinic antagonist d-tubocurarine, but refractory to strychnine, atropine, and propylbenzilylcholine mustard, at concentrations that completely block alpha9nAChR and/or mAChR. Activation of RDMPP on application of ACh or DMPP to a subpopulation of isolated posterior semicircular canal (SCC) hair cells resulted in a large depolarization (18.0 +/- 1.2 mV). The current underlying this depolarization was typically small (80.1 +/- 21.6 pA) and showed an inward rectification starting around -45 mV. Given their respective EC50s (47 nM vs. 20 microM), RDMPP was nearly 400 times more sensitive to ACh than alpha9nAChR and thus responded to concentrations of ACh considered too low to be effective at stimulating alpha9nAChR. Despite this remarkable sensitivity, exogenous ACh readily stimulated the mAChR in the intact posterior SCC preparation but failed to activate RDMPP unless the acetylcholinesterase inhibitor physostigmine was present, or high concentrations of ACh were used (>3 mM). In frog, RDMPP most likely underlies the rapid excitatory response seen during efferent stimulation.
منابع مشابه
Muscarinic ACh receptor activation causes transmitter release from isolated frog vestibular hair cells.
In the frog, vestibular efferent fibers innervate only type-II vestibular hair cells. Through this direct contact with hair cells, efferent neurons are capable of modifying transmitter release from hair cells onto primary vestibular afferents. The major efferent transmitter, acetylcholine (ACh), is known to produce distinct pharmacological actions involving several ACh receptors. Previous studi...
متن کاملDirect influence of temperature on the semicircular canal receptor.
Effect of thermal stimulus on the vestibular receptor was studied using the isolated frog semicircular canal. The posterior (PSC) and lateral semicircular canals (LSC) were placed in the horizontal plane in frog Ringer's solution. The ampullary nerve was sucked into a glass suction electrode to record compound potentials. The steel thermal probe was positioned next to the ampullary surface to g...
متن کاملExpression and Localization of Ryanodine Receptors in the Frog Semicircular Canal
Several experiments suggest an important role for store-released Ca²⁺ in hair cell organs: drugs targeting IP₃ and ryanodine (RyRs) receptors affect release from hair cells, and stores are thought to be involved in vesicle recycling at ribbon synapses. In this work we investigated the semicircular canal distribution of RyRs by immunofluorescence, using slice preparations of the sensory epitheli...
متن کاملRegional distribution of calcium currents in frog semicircular canal hair cells.
In the present work we studied the regional expression of voltage-dependent Ca channels in hair cells from the frog semicircular canals, employing whole-cell patch-clamp on isolated and in situ hair cells. Although Ca channels are thought to play a major role in afferent transmission, up to now no data were available regarding their distribution in vestibular organs. The problem appears of inte...
متن کاملSensory transduction at the frog semicircular canal: how hair cell membrane potential controls junctional transmission
At the frog semicircular canals, the afferent fibers display high spontaneous activity (mEPSPs), due to transmitter release from hair cells. mEPSP and spike frequencies are modulated by stimulation that activates the hair cell receptor conductance. The relation between receptor current and transmitter release cannot be studied at the intact semicircular canal. To circumvent the problem, we comb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 90 3 شماره
صفحات -
تاریخ انتشار 2003